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Looking at animals

* 2D pose estimation dominates animal
behavior research
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Looking at animals in 3D

* Estimate the 3D location of the body joints

D. Joskra et al., AcinoSet: A 3D Pose Estimation Dataset and
Baseline Models for Cheetahs in the Wild, ICRA 2021



Looking at animals in 3D

* Estimate the 3D location of the body joints

Not yet sufficient!

* Couples 3D pose
with body shape

« Hard to lift the 2D
landmarks to 3D in
monocular settings

D. Joskra et al., AcinoSet: A 3D Pose Estimation Dataset and
Baseline Models for Cheetahs in the Wild, ICRA 2021



Looking at animals in 3D

With a model-based approach
* Estimate 3D pose using a parametric model

* The model represents prior knowledge about
the body shape and helps in monocular
reconstruction
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Looking at animals in 3D

» Shape is functional to 3D pose estimation
from monocular data
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Looking at animals in 3D

* |f shape is not correct, then 3D pose is wrong:
we need to predict accurate shape even if we
are only interested in 3D pose!
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A model-based approach

e What is a 3D model of an animal?

— A mathematical formulation that, given
disentangled shape and pose parameters, deforms
a template to return a 3D object

v =M(j3,0)

template shaped template in t-pose articulated shaped model



Model-based 3D posture analysis
v =M(j3,0)

 With the disentagled representation we can
compare 3D pose of different species,

provided they are represented with the same
skeleton




The SMAL model

S. Zuffi, A. Kanazawa, D. Jacobs, M.J.
Black, 3D Menagerie: Modeling the 3D
Shape and Pose of Animals, CVPR 2017
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Learning SMAL
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Shape space

Vshape (ﬁ) — Viemplate + BSﬁT

Shape space first 4 2D t-sne plot of the shape
principal components variables for the training samples
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Model fit to images

SMALR SMALST BARC
*  Optimization * QGrevy's zebra « Dogs
»  Multiple images * Limited appearance « High appearance

variation variation
 Trained with 3D data

Trained with 2D data




BARC: Learning to Regress 3D Dog
Shape from Images by Exploiting Breed
Information

N. Ruegg, S. Zuffi. K. Schindler, M.J. Black, BARC : Learning to Regress 3D Dog
Shape from Images by Exploiting Breed Information, CVPR 2022



H. G. Parker et al, Genomic analyses reveal the
influence of geographic origin, migration, and
hybridization on modern dog breed development.
Cell Reports, 4(19):697-708, 2017
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Side information

Similar shape

French bulldog




StanfordExtra Dataset

Khosla et al., Novel dataset for Fine-Grained Image
Categorization, CVPR 2011

B. Biggs et al., Who left the dogs out? 3D animal
reconstruction with expectation maximization in the
loop, ECCV 2020




Breed-aware reconstruction
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Breed-aware reconstruction
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Breed-aware reconstruction

breed breed classification breed 3D CG model loss
triplet loss loss prior (for few breeds)
ResNet-34
ol L2 shape branch
~ breed
—_—
‘ *@ z silhouette
\ / 8£ — > ecti
t —— B model in T-pose with reprlcgsé: ion
FC shape correctives
bone .
__lengths " keypoint
i reprojection
prior o
Stacked Hourglass
NormFIow
segment- 2D BPS
}{ ation encodlng h@"w "‘ pose
keypoints = T /
" —> _.4 translation
i i FC posed model
input image

ey —l camera
[ segmentatlon keypomt pose branch w

loss loss prior




Breed-aware reconstruction
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Breed-aware reconstruction
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Breed-aware reconstruction
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Breed-aware reconstruction
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Breed-aware reconstruction

A small set of
prototype 3D
shapes to teach
the network fine-
grain breed details
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Breed-aware reconstruction
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Latent space

T-SNE plots of the latent variable z
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without
breed
losses

with breed
similarity
loss

with all
breed
losses

BARC results




BARC results

BARC (ours)
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BARC results
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Unseen breeds
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https://barc.is.tue.mpg.de/
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Demo

https://huggingface.co/spaces/runa91/barc_gradio

7 Input Image
™ Download 3D Mode!

Crop Choice [ Bounding Box (Faster R-CNN prediction)

© input image is cropped

(O use Faster R-CNN to get a bounding box

R m




SMALST

Predict 3D shape, pose and texture of the Grevy's zebra from images

S. Zuffi et al., 3D Safari: learning to estimate zebra pose, shape and
texture from images in-the-wild, ICCV 2019




Method PCK@0.05 PCK@0.1
(A) SMAL (gt kp and seg) 99.4
(B) feed-forward on synthetic S 7
Res u It S (C) opt features 81.6
(D) opt variables 80.6
(E) opt features bg img 80.5
(F) feed-forward pred. 80.3
(G) no texture 76.2
(H) noise bbox 79.9
Initial After predicted
image

prediction

optimization

No texture With texture
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