Continuous Learning for Long-term Ecological Monitoring

Paul Bodesheim

Computer Vision Group, Friedrich Schiller University Jena

CamTrap Ecology Meets Al Workshop 2022, September 28th

Paul Bodesheim Continuous Learning for Long-term Ecological Monitoring

1

Fine-grained recognition

- How work in this area started: bird species identification
- Distinction of highly similar species by small details
 Small (visual) differences between species (classes)
- ► Wah et al. (2011): The Caltech-UCSD Birds-200-2011 Dataset. ⇒ Dataset paper with more than 2,500 citations by now

Fine-grained recognition

- How work in this area started: bird species identification
- ► Distinction of highly similar species by small details ⇒ Small (visual) differences between species (classes)
- ► Wah et al. (2011): The Caltech-UCSD Birds-200-2011 Dataset. ⇒ Dataset paper with more than 2,500 citations by now
- Part-based approaches (allow for attribution of decisions), history of work in our group:

Göring at al.: Nonparametric Part Transfer for Fine-grained Recognition. CVPR 2014. Freytag et al.: Exemplar-specific Patch Features for Fine-grained Recognition. GCPR 2014. Simon and Rodner: Neural Activation Constellations: Unsupervised Part Model Discovery with Convolutional Networks. ICCV 2015.

Rodner et al.: Fine-grained Recognition in the Noisy Wild: Sensitivity Analysis of Convolutional Neural Networks Approaches. BMVC 2016.

Simon et al.: Generalized orderless pooling performs implicit salient matching. ICCV 2017.

Korsch et al.: Classification-Specific Parts for Improving Fine-Grained Visual Categorization. GCPR 2019.

Simon et al.: The Whole Is More Than Its Parts? From Explicit to Implicit Pose Normalization. TPAMI 2020.

Korsch et al.: End-to-end Learning of Fisher Vector Encodings for Part Features in Fine-grained Recognition. GCPR 2021.

Individual identification: a special fine-grained scenario

Long species lists and corresponding datasets that have been considered in the past

Terrestrial:

- Amur Tiger
- Brown Bear
- Cheetah
- Elephants
- Great Apes
- Holstein-Friesian Cattle
- Panda
- Zebra
- ▶ ...

Aquatic:

- Common Dolphin
- Great White Shark
- Green Turtle
- Humpback Whale
- Manta Ray
- Ringed Seal
- ▶ ...

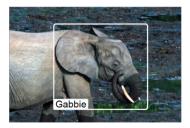
Insects:

- Bumblebee
- Fruit Fly
- ► ...

(Sorry if I missed your favorite species / the species you are working with!)

Our previous work on identifying individuals: elephants

- Our elephant ID system is being used in the field!
- Körschens et al.: Towards Automatic Identification of Elephants in the Wild. AIWC Workshop 2018.
- Körschens and Denzler: ELPephants: A Fine-Grained Dataset for Elephant Re-Identification. ICCV Workshop 2019.



Our previous work on identifying individuals: apes

Gorillas:

- Identification system for field photographs based on detecting and recognizing Gorilla faces
- Mbeli Bai study at the Nouabal-Ndoki National Park, Republic of Congo (Wildlife Conservation Society)
- Brust et al.: Towards Automated Visual Monitoring of Individual Gorillas in the Wild. ICCV Workshop 2017.

Our previous work on identifying individuals: apes

Gorillas:

- Identification system for field photographs based on detecting and recognizing Gorilla faces
- Mbeli Bai study at the Nouabal-Ndoki National Park, Republic of Congo (Wildlife Conservation Society)
- Brust et al.: Towards Automated Visual Monitoring of Individual Gorillas in the Wild. ICCV Workshop 2017.

Chimpanzees:

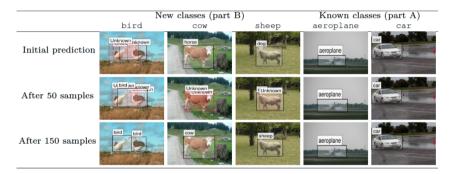
- Predicting IDs and attributes (gender, age, age group)
- Freytag et al.: Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates. GCPR 2016.
- Käding et al.: Active Learning for Regression Tasks with Expected Model Output Changes. BMVC 2018.

Active learning, e.g., via our WALI framework

- Machine learning model selects which samples are worth annotating (automatic selection)
- Making use of these newly labeled samples requires incremental model learning
- Always training from scratch is suboptimal / computationally expensive

Käding et al.: Watch, Ask, Learn, and Improve: A Lifelong Learning Cycle for Visual Recognition. European Symposium on Artificial Neural Networks (ESANN) 2016.

Incremental learning, e.g., of deep object detectors

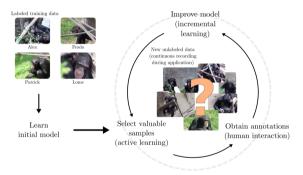


Brust et al.: Active Learning for Deep Object Detection. VISAPP 2019.

Lifelong learning concept

- Fixed pre-trained recognition models might quickly reach their limits when applied in long-term monitoring studies
- Continuous learning with model adaptations to new environments and unseen visual appearances of animals is required to improve recognition models over time
- Exploit the continuous data stream of recordings during the application
- The lifelong learning framework (with active learning and human-in-the-loop) offers a possible solution

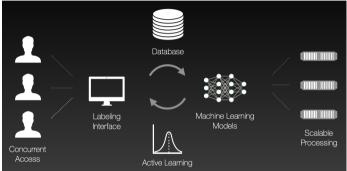
Lifelong learning cycle



Bodesheim et al.: Pre-trained models are not enough: active and lifelong learning is important for long-term visual monitoring of mammals in biodiversity research. Mammalian Biology 2022.

Related work on active learning by others

- Norouzzadeh et al.: A deep active learning system for species identification and counting in camera trap images. Methods in Ecology and Evolution 2020.
- Kellenberger et al.: AIDE: Accelerating image-based ecological surveys with interactive machine learning. Methods in Ecology and Evolution 2020.



AIDE workflow, image source: https://github.com/microsoft/aerial_wildlife_detection

(Not to be confused with: Dimitriadou et al.: AIDE: An Active Learning-Based Approach for Interactive Data Exploration. IEEE Transactions on Knowledge and Data Engineering 2016.)

Our former monitoring task: herbivorous mammals in Portugal

Study design

100 cameras in nested grid (3.5 x 3.5 km)

Evenly distributed over different habitat types (grass land, heath, forest)

More than 8,000 camera days (individual cameras working between 4 and 125 days from April to September)

Total of 412,217 images recorded

Joint work with Andrea Perino from iDiv (thanks for the figure)

Our former monitoring task: herbivorous mammals in Portugal

Study design

100 cameras in nested grid (3.5 x 3.5 km)

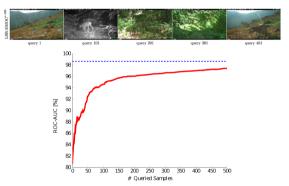
Evenly distributed over different habitat types (grass land, heath, forest)

More than 8,000 camera days (individual cameras working between 4 and 125 days from April to September)

Total of 412,217 images recorded

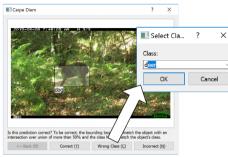
Joint work with Andrea Perino from iDiv (thanks for the figure)

First task: does the image contain an animal or not? (identify empty images)



Käding et al.: Large-scale Active Learning with Approximated Expected Model Output Changes. GCPR 2016.

Tools and systems for human interaction: label correction



- Käding et al.: Large-scale Active Learning with Approximated Expected Model Output Changes. GCPR 2016.
- Brust et al.: Active and Incremental Learning with Weak Supervision. KI 2020.
- Brust et al.: Carpe Diem: A Lifelong Learning Tool for Automated Wildlife Surveillance. Computer Science for Biodiversity Workshop (CS4Biodiversity) 2021.

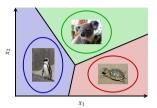
Tools and systems for human interaction: identification

- Käding et al.: Active Learning and Discovery of Object Categories in the Presence of Unnameable Instances. CVPR 2015.
- Käding et al.: Large-scale Active Learning with Approximated Expected Model Output Changes. GCPR 2016.
- Brust et al.: Active and Incremental Learning with Weak Supervision. KI 2020.
- Brust et al.: Carpe Diem: A Lifelong Learning Tool for Automated Wildlife Surveillance. Computer Science for Biodiversity Workshop (CS4Biodiversity) 2021.

Tools and systems for human interaction: discovery

- Käding et al.: Active Learning and Discovery of Object Categories in the Presence of Unnameable Instances. CVPR 2015.
- ▶ Käding et al.: Large-scale Active Learning with Approximated Expected Model Output Changes. GCPR 2016.
- Brust et al.: Active and Incremental Learning with Weak Supervision. KI 2020.
- Brust et al.: Carpe Diem: A Lifelong Learning Tool for Automated Wildlife Surveillance. Computer Science for Biodiversity Workshop (CS4Biodiversity) 2021.

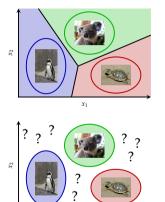
Closed-world vs. open-set recognition: novelty detection



 x_1

Paul Bodesheim Continuous Learning for Long-term Ecological Monitoring 14

Closed-world vs. open-set recognition: novelty detection

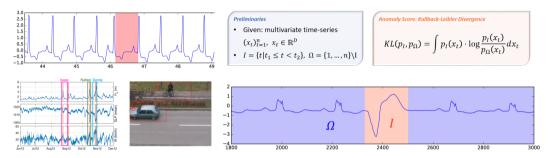


 x_1



- Bodesheim et al.: Kernel Null Space Methods for Novelty Detection. CVPR 2013.
- Bodesheim et al.: Local Novelty Detection in Multi-class Recognition Problems. WACV 2015.
- Schultheiss et al.: Finding the Unknown: Novelty Detection with Extreme Value Signatures of Deep Neural Activations. GCPR 2017.

Anomaly detection in videos and time series data



Barz et al.: Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection. PAMI 2018.

https://cvjena.github.io/libmaxdiv

and https://github.com/cvjena/libmaxdiv

The idea of a "weather station for biodiversity"

AMMOD project: Automated Multisensor Stations For Monitoring Of BioDiversity (https://ammod.de)

Graphic by V.ALTOUNIAN/SCIENCE. From "Where have all the insects gone?" by Gretchen Vogel, SCIENCE, May 10, 2017 (doi:10.1126/science.aal1160).

- Visual monitoring / Camera traps
- Smellscapes / Scent detector
- Metabarcoding / Pollen collector and Malaise traps
- Acoustic monitoring / Sound recordings
- Self-sustaining stations / Automatized data transfer to central cloud storage
- Wägele et al.: Towards a multisensor station for automated biodiversity monitoring. Basic and Applied Ecology 2022.

visAMMOD teams

- ► TU Munich, Department of Computer Science
 - Bernd Radig, Franziska Schmickler, Ludwig Kürzinger
 - Hardware development of moth scanner and stereo camera setup
- University of Bonn, Institute of Computer Science 4: Security and Networked Systems
 - Volker Steinhage, Timm Haucke, Morris Klasen, Frank Schindler
 - Depth estimation, 3D reconstruction and analysis
- Friedrich Schiller University Jena, Computer Vision Group
 - Paul Bodesheim, Joachim Denzler, Daphne Auer, Julia Böhlke, Dimitri Korsch
 - Detection and species identification, moths (light traps) and wildlife (camera traps)

Associated partners:

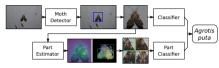
- Tilo Burghardt (University of Bristol)
- Christian Fiderer and Marco Heurich (Bavarian Forest National Park)
- Gunnar Brehm (Phyletic Museum Jena)

The AMMOD moth scanner prototype in Jena

- Joint work with Gunnar Brehm (Phyletic Museum Jena) who built the setup, UV light source to attract insects
- Continuous monitoring since June 2021, images taken at regular intervals during night, e.g., every 2 minutes
- ► June to October 2021: 95 nights, 27,455 images (201 GB), detection & recognition down to species level!
- Korsch et al.: Automated Visual Monitoring of Nocturnal Insects with Light-based Camera Traps. CVPR Workshop on Fine-grained Visual Classification 2022.

Two approaches for moth species identification

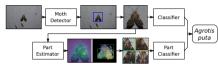
Part-based classification:



- Korsch et al.: Classification-Specific Parts for Improving Fine-Grained Visual Categorization. GCPR 2019.
- Korsch et al.: Deep Learning Pipeline for Automated Visual Moth Monitoring: Insect Localization and Species Classification. Computer Science for Biodiversity Workshop (CS4Biodiversity) 2021.

Two approaches for moth species identification

Part-based classification:

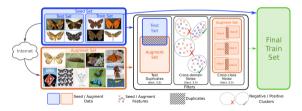


Korsch et al.: Classification-Specific Parts for Improving Fine-Grained Visual Categorization. GCPR 2019.

 Korsch et al.: Deep Learning Pipeline for Automated Visual Moth Monitoring: Insect Localization and Species Classification. Computer Science for Biodiversity Workshop (CS4Biodiversity) 2021.

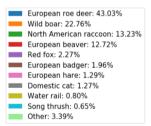
Webly supervised learning:

- Böhlke et al.: Lightweight Filtering of Noisy Web Data: Augmenting Fine-grained Datasets with Selected Internet Images. VISAPP 2021.
- Böhlke et al.: Exploiting Web Images for Moth Species Classification. Computer Science for Biodiversity Workshop (CS4Biodiversity) 2021.

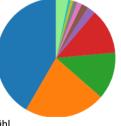


Wildlife camera traps: Brandenburg video dataset

- Joint work with Tilo Burghardt (University of Bristol) and his student George Ioannou
- > 1.5 TB of video data from camera traps in Brandenburg
- 72.3% of the videos are empty (do not contain an animal), species in remaining videos:



Video dataset provided by Hjalmar Kühl



Biodupreity Monitorion

Paul Bodesheim Continuous Learning for Long-term Ecological Monitoring 20

Wildlife camera traps: Bavarian Forest National Park

Red fox

Red squirrel

Challenges:

- Daytime vs. nighttime
- Small vs. large animals
- Occlusion and truncation
- Scene / background clutter

Wild boar

Two wild boars

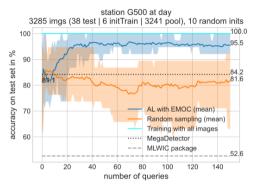
European badger

Approach:

- Filter empty images (binary task: empty or not)
- Species classification in a lifelong learning scenario

Image datasets from different camera site networks (hundreds of locations, forest and trail sites) provided by Christian Fiderer and Marco Heurich \Rightarrow many images do not contain an animal (often more than 50%)

Active learning for filtering empty images (without animals)



- Region-specific models, e.g., one per station
- Distinction between daytime and nighttime possible
- Active learning approach gradually improves recognition performance with minimal annotation efforts
- Less than 5% of the images need to be annotated to achieve 95.5% accuracy!

Auer et al.: Minimizing the Annotation Effort for Detecting Wildlife in Camera Trap Images with Active Learning. Computer Science for Biodiversity Workshop (CS4Biodiversity) 2021.

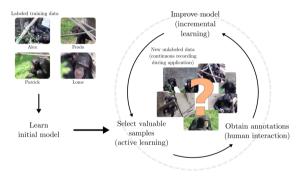
Continuous learning with neural networks: rehearsal learning

- Continuously incoming data (streams, experiences) that can be used to update/improve the species classifier
- Train the neural network for further epochs when new data arrives (fine-tuning), different strategies are possible:
- 1. **Naive approach:** only use the new data for additional training steps ⇒ Overfitting to new data, catastrophic forgetting, concept drift
- 2. Cumulative approach: use the new data and all the previously seen data
 - \Rightarrow Computational costs explode over time due to steadily increasing number of samples
- 3. Rehearsal learning: use the new data and a subset of the previously seen data
 - \Rightarrow Trade-off, requires strategies for selecting the subset

Again the lifelong learning concept

- Fixed pre-trained recognition models might quickly reach their limits when applied in long-term monitoring studies
- Continuous learning with model adaptations to new environments and unseen visual appearances of animals is required to improve recognition models over time
- Exploit the continuous data stream of recordings during the application
- The lifelong learning framework (with active learning and human-in-the-loop) offers a possible solution

Lifelong learning cycle



Bodesheim et al.: Pre-trained models are not enough: active and lifelong learning is important for long-term visual monitoring of mammals in biodiversity research. Mammalian Biology 2022.

Summary

- ► Fine-grained species recognition and individual identification are challenging tasks for humans and machines ⇒ Team up, human-in-the-loop approaches
- Incorporate expert knowledge and feedback, e.g., via active learning
- Continuous adaptations are required for successful long-term monitoring (changing environments, new individuals, ...) ⇒ Lifelong learning, e.g., within the AMMOD project

Summary

- ► Fine-grained species recognition and individual identification are challenging tasks for humans and machines ⇒ Team up, human-in-the-loop approaches
- Incorporate expert knowledge and feedback, e.g., via active learning
- Continuous adaptations are required for successful long-term monitoring (changing environments, new individuals, ...) ⇒ Lifelong learning, e.g., within the AMMOD project
- Systems are required that can be used by ecologists (e.g., to provide feedback and to derive ecological metrics), examples from our group:
 - Monitoring system for herbivorous mammals in Portugal (iDiv, Leipzig)
 - EIS: Elephant Identification System (Cornell Lab of Ornithology, Elephant Listening Project)
 - Identification and age estimation of gorillas (WCS, Mbeli Bai Study)
 - AMMOD biodiversity monitoring system (in development, currently several sites in Germany)

Thank you for your attention!

Contact:

Paul Bodesheim (paul.bodesheim@uni-jena.de)

Computer Vision Group: The AMMOD project: https://www.inf-cv.uni-jena.de https://ammod.de

Acknowledgments for project funding:

SPONSORED BY THE

Federal Ministry of Education and Research

Paul Bodesheim Continuous Learning for Long-term Ecological Monitoring